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Local Extrapolation in the Solution of Ordinary 
Differential Equations 

By L. F. Shampine* 

Abstract. The local errors being estimated in the solution of an initial value problem can 
be added in to make the solution more accurate but this is not always advisable. A 
rule for deciding when to extrapolate is studied for one-step methods. Some observations 
about the correctness of local error estimators and extrapolation of multistep methods 
are also made. 

Introduction. In a recent paper [1], the author and H. A. Watts studied the effi- 
ciency of a number of local error estimators for Runge-Kutta methods. Local error is 
not the only possibility for controlling error in codes for the initial value problem, but 
it is almost universally used because it is the most practical. There are two other ap- 
plications of local error estimates which are important. One is to make a locally 
optimal choice of step size. The other is the subject of this paper; one can add in the 
estimated error to improve (hopefully) the accuracy of his computations. This local 
extrapolation asymptotically raises the order of the method by one. Still, extrapola- 
tion is not necessarily advantageous. The extrapolated value can be less accurate 
and stability can be seriously affected. We have seen working codes which never 
extrapolate, always extrapolate, and which provide it as an option. We shall give 
a simple test which circumvents stability problems for one-step methods and which 
appears to be effective at choosing to extrapolate only if the accuracy is enhanced. 
The test is applicable to multistep methods but there are difficulties in this case. 

We first make some observations about local error estimators and their use in 
extrapolation. In [1], we were unable to interpret some Runge-Kutta formulas of 
Zonneveld in terms of local error, but we can interpret them very naturally in this 
context. We also study two other variants of Runge-Kutta which are candidates for 
an efficient Runge-Kutta code. Some interesting observations about error estimators 
for multistep methods are made too. We consider extrapolation of Adams formulas 
and point out a relation which does not seem as well known as it ought to be. Two 
rather well-known predictor-corrector pairs are shown by counterexample to have 
local error estimators which are not asymptotically correct. We provide some com- 
putations of stability regions for Adams methods which may be of general interest. 

Local Error Estimators. In [1], we surveyed local error estimators for Runge- 
Kutta methods and used a set of formulas of Zonneveld [2] to illustrate a different 
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way of measuring error. Motivated by Taylor series methods, he estimates the last 
term of the Taylor expansion that has been taken into account. For example, his 
second-order formula is 

ko = f(xo, yo), k, = f(xo, yo + hko), Y = yo + h(ko + kl)/2, 

along with the estimate of the term of order h2 going into y(xl), 

term 0(h2) h(k1 - ko)/2. 

We describe this in terms of the first-order formula y* = yo + hko. Its local error is 

local error = y(x) -y* = Y - y* + 0(h3) = h(k1 - ko)/2 + 0(h3). 

Moreover, 

Y* + h(k ko)/2 = Y + (Yi -Y*) = 
Yl. 

That is, we say his formula is a first-order formula with an asymptotically correct 
local error estimator and the formula is always extrapolated to become second-order. 
This is true of all of Zonneveld's formulas. His formula of order p can be described 
as a formula of order p - 1 combined with a local error estimator to extrapolate 
to order p. Since his step adjustment is a locally optimal one based on order p - 1, 
it is clear this is the proper way to view his formulas. This observation not only 
brings his set of formulas into the same framework as the others studied but his 
codes also serve as examples of working codes which always extrapolate. We study 
the formula he describes as fifth-order below by deducing the underlying fourth-order 
formula. It requires seven evaluations per step with the error estimate. 

In [1], we contrasted the classical Runge-Kutta fourth-order scheme with doubling 
error estimator to a procedure using a scheme of England. The text [3] gives a classical 
code of this type which always extrapolates (the constants in the error estimator are 
incorrect). Two additional schemes which are quite efficient have since come to our 
attention. Fehlberg [4] gives a fourth-order procedure using six function evaluations 
per step with an asymptotically correct local error estimator. He explicitly derives the 
formula by deriving formulas of orders four and five and using their difference as an 
estimate of the error in the lower order formula. Of course, the parameters are chosen 
so that most function evaluations are used in both formulas to keep the total cost 
down to six evaluations per step. Shintani [5] has given an effective scheme using 
seven evaluations per double step with a similar derivation. Along with England's 
scheme, and perhaps Zonneveld's, we feel these are the principal possibilities for an 
efficient Runge-Kutta code. Their fair comparison is not an easy matter. Shampine 
and Watts [1] prefer to use England's scheme instead of doubling, but local extrapola- 
tion is not considered in their comparison. Examination of the stability regions with 
respect to the effect of extrapolating was partly responsible for this paper. Extrapola- 
tion substantially increases the stability regions of Fehlberg's and Zonneveld's 
schemes and decreases the others. Attempting to prevent this stability loss for Eng- 
land's scheme led to the device we present which is completely successful in this con- 
text. 

The only device we know of in serious use for estimating local errors of multistep 
methods is Milne's device of comparing predicted and corrected values [6, p. 256]. 
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A very important example is the combination of Adams-Bashforth predictor and 
Adams-Moulton corrector. There is an interesting point about extrapolation in this 
case which appears not to be well known. The Adams-Bashforth formula of order 
k is 

k-i 

Yn= Yn-i + h > yjV fn -1 
i =o 

where 

fn-1 f(xn13, Yn-1)3 

Vi= jth backward difference, 

i= (-1) f () ds. 

Similarly, the Adams-Moulton formula of order k is 
k-i 

Yn = Yn-I + h E -y!V7fn 
i =0 

where 

(-1) sf ( + 1)ds. 

To distinguish the Adams-Bashforth value, we shall write y' in what follows. 
If one presumes the values yn-, Yn-2, * are exactly equal to y(xn l), y(xn-2), I 
a smooth solution of y' = f(x, y), he finds 

y(xn) Yn = Z'kh +1 (k+1) + O(hk+2 

y(xn) Yn = Yk*h +iy(k+l)(7) + O(h k+2) 

Then a little manipulation shows 

local error = y(xn) - = 2.-Y)/(Yk- y*) + O(h+) 

The first term is the computable local error estimate. It is an easy exercise to show that 
Yn = Yp + hy,-1vkfn, once one realizes that y*y = yo, -y' = yj-yi-y for j 1. 
If one were to use this Adams-Bashforth predictor of order k and an Adams-Moulton 
corrector of order k + 1, he would find yn yP + hy kV kfn where we use y' to 
distinguish the result of the corrector of higher order. What has this to do with extrap- 
olation? To estimate the error, we must use predictor and corrector of the same 
order as we did above and then if we extrapolate by forming 

Yn + * (Yn Ynp) = Yn + (hyk-lVkfn) 
7Yk 7Yk 7k-1 

= Yn + h7k-l1Vkfn + he vkfn = Yn E 

we find this is the same as using a corrector of one higher order. As we understand 
it, the variable order, variable step Adams code of F. T. Krogh [7], which has received 
well deserved attention, always extrapolates in this way. 
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An interesting point about Milne's device is that it is almost always applied with 
the assumption above that the memorized values are exact, which they obviously 
are not. One ought to be suspicious that the errors actually present might invalidate 
the application. Henrici hints at this when he says in [6, p. 257] that "To justify a 
similar device for calculating y 1 '+1 in the general case where the values yr yna + , . . . 

Y.+ k-1 are not assumed to be exact, it seems necessary to assume that the left-hand 
terms of the predictor and corrector formulas should be the same * * ." He goes on 
to give a complete proof of the asymptotic correctness of the error estimator previously 
stated for the Adams methods which takes into account the propagated errors. In 
this very important case, the usual plausibility argument happens to lead to the cor- 
rect conclusion but this is not always so. 

The midpoint-trapezoidal rule combination has been frequently used in articles 
to illustrate Milne's device but the estimator is not asymptotically correct! A counter- 
example is readily constructed. The rule in PECE form is 

Yn+= Yn-l + 2hf(x., y.), 

Yn+1 = yn + h(f(x.+i, yn+l) + f(xn, yn))/2, 

est = (Y+ Yn+)5 

Apply this to y' = y, y(O) = 1 with a constant step of h. Start the process with the 
exact values yo = 1, Yi = eh. The local error at xn requires the solution of 

u =u, u(xn) = Yn 

for then, by definition, 

local error = l.e. = U(Xn+l) - Yn+1 = e hYn -Yn+- 

Because Yo, Yi are exact, the local error at xi is asymptotically correct. At x2 however, 
there is error present and a straightforward calculation shows that 

l.e. = -h3/12 + 0(h4), 

est = (yP - y3)/5 = -h3/10 + 0(h4). 

A similar observation of considerably more significance is that Hamming's formulas 
[8] 

Yn+1 = Yn-3 + 4h[2y' - Y'-1 + 2Y'-2]/3, 

Yn+1 = [9Yn - Yn-2]/8 + 3h[yP+1 - 2y' - y'_ ]/8, 

est = 9(Y+1 -Yn+1)121 

are incorrect in the same way. The same counterexample suffices though the calcula- 
tions are more tedious. Starting with exact values, one finds 

l.e. = ehy4 -Y5 = -9h5/320 + 0(h6) 

est = 9(yP -y5)/l21 = -1049h5/38720 + 0(h6). 

In decimal form, the coefficients are respectively, -0.028125, -0.0270919. Since 
the error estimate is not asymptotically correct, we recommend the method be aban- 
doned. Hamming qualifiedly advocates extrapolation though our observation says 
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it is not justified in general. The implementation in the IBM SSP always extrapolates. 
Apparently, the estimate is nearly correct in most cases and the effect of being in- 
correct quite difficult to spot. It is interesting that later Hamming [9, p. 205] advocates 
predictor-corrector combinations of the form envisioned by Henrici but for reasons 
not associated with their error estimator. 

When to Extrapolate. Experience seems to show that the benefit gained from 
local extrapolation is quite modest and it is the fact that it costs practically nothing 
which makes it worthwhile. With any of the methods discussed, we can write the 
result of a step as yn?, = yn + h4n. If u(x) is the solution of the differential equation 
such that u(x1,) = yn, we have 

u(x.,l) = yn + h4J? + I.e. 

Let us denote the local error estimate by est. We propose that if lestj < a lh4kl, then 
extrapolate by forming yn + 1 + est and otherwise do not. Here, a is a constant and 
we suggest a value of 1/16. 

This test is a natural one on the accuracy and asymptotic behavior. If the method 
is of order p, the term hJn is no smaller than O(h'), except at isolated points and in 
very special cases, and the local error is O(h" 1). Except in rare instances, the test 
is always passed asymptotically and one always extrapolates as he should. If the test 
is failed, one has good grounds for suspecting that the asymptotic basis of the com- 
putations is insufficiently valid to permit extrapolation. The value of a does not seem 
to matter much in this argument; it seems plausible to choose it so that the increment 
has a few digits unaffected by extrapolation. 

Besides attempting to extrapolate only when the accuracy will be improved, we 
also want to prevent any loss in stability. For one-step methods, this test in effect 
defines a new method and we can compute the stability region associated with it in 
the usual way. The regions depend on the parameter a of course and we seek an a 
such that the modified extrapolation does not affect the stability region in a serious 
way. We have made these plots for various a and the various methods. The most 
important of them may be found in the report [10]. Here, for the sake of brevity, we 
describe the results another way. We computed the stability regions in polar coordi- 
nates. For a given angle 0, let Ra denote the distance along the radius to the boundary 
of the stability region for the given a and method. A value of a = 0 corresponds 
to never extrapolating, and a = o to always extrapolating. Among other quantities, 
we computed the average values of RoJRO, R1,I1 R0. The first quantity measures, 
roughly, whether always extrapolating is desirable or not. The second quantity shows 
whether or not our device with a = 1/16 is effective in preserving the stability prop- 
erties of the method. We found the average ratio and the plots both show that a = 
1/16 is sufficiently small that the stability region with this modified extrapolation 
is virtually identical to that without extrapolation at all. Thus, we are completely 
successful, in the sense of stability regions, in removing stability difficulties associated 
with local extrapolation. We remark that a = 1/16 is sufficiently small but all smaller 
a give regions still closer to the regions without extrapolation so one can use smaller 
a as he prefers. With this device we recommend that one extrapolate when using 
these methods. 
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Method average R I/Ro average Rll 6/Ro 

Classical with 
doubling 0.89 1.00 

England 0.70 1.00 
Fehlberg 1.15 1.00 
Shintani 0.92 1.00 
Zonneveld 1.43 1.00 

Adams order 1 1.51 1.00 

We have included in this table the Adams-Bashforth-Moulton PECE combination 
of order one which is a one-step method. This is an important procedure for starting 
variable order Adams codes such as Gear's [3] and Krogh's [7]. The device described 
can obviously be applied to multistep methods in general, but there are conceptual 
difficulties. The analysis of the test in terms of stability regions is not applicable 
because, with memory, this device does not lead to a fixed difference scheme. More- 
over, one does not then have a rigorous basis for the local error estimate because 
an asymptotic expansion for the error is present only when h is sufficiently small that 
one is essentially always extrapolating. Because of this, we only consider the options 
of never extrapolating or always extrapolating; then stability regions are defined 
in the standard way. We have computed the stability regions for the Adams PECE 
combinations of orders one through eleven with and without extrapolation. All 
plots are found in the report [10]. The following table gives the average ratio of the 
radius for always extrapolating to never extrapolating. 

Order average R,/RO 

1 1.53 
2 1.12 
3 1.08 
4 1.06 
5 1.05 
6 1.05 
7 1.05 
8 1.05 
9 1.03 

10 1.00 
11 .91 

For order one, the average ratio RoI/RO differs somewhat from the value in the pre- 
ceding table. Because of the expense of the Adams computations, many fewer points 
were obtained on the boundary of the region than for the one-step computations. 
Extrapolation seems to increase stability on the average for the Adams methods as 
well as improving the accuracy; so we recommend it be used, at least for orders 
through 10. 
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